Active Aeroelastic Control of Lifting Surfaces via Jet Reaction Limiter Control
نویسندگان
چکیده
In this paper we present, the design and modeling of the novel nonlinear limiter control feedback control plant [Myneni et al., 1999; Corron et al., 2000; Corron & Pethel, 2002], applied for the first time here in an aeroelastic system, and actuated as a jet reaction torquer control of a wing with potentially chaotic dynamics. This study will provide a better understanding of the nonlinear dynamics of the open/closed-loop aeroelasticity of flexible wings with either steady or unsteady aerodynamic loads. The limiter control can be applied to either the plunging or pitching characteristic of the wing or to both of them. We show that the control can effectively suppress Limit Cycle Oscillations (LCO) and chaos well beyond the nominal flutter speed. This could lead to a practical implementation of the control mechanism on actual and future generation aircraft wings via implementation of a combination of propulsive/jet type forces, micro surface effectors and fluidic devices. Analysis of this control produced favorable results in the suppression of LCO amplitude and increased flutter boundaries for plunging and pitching motion. The limiting control has asymptotically zero power, and is simply implemented, making it a feasible solution to the problem of the chaotic dynamics of the oscillating airfoil.
منابع مشابه
Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: a Functional Approach
In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unstead...
متن کاملA Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces
The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system ...
متن کاملVolterra Series Approach for Nonlinear Aeroelastic Response of 2-d Lifting Surfaces
The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-d...
متن کاملAeroelasticity of Time-Delayed Feedback Control of Two-Dimensional Supersonic Lifting Surfaces
Determination of the nature of the critical flutter boundary (benign/catastrophic) and its control constitute important issues that can be addressed within the nonlinear formulation of lifting surface theory. The main attention of this paper consists in the development of a computational approach enabling one to get a better understanding on time-delayed dynamics as applied to this important ae...
متن کاملNonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft
This paper presents a study on the coupled aeroelastic/flight dynamic stability and gust response of a blendedwing-body aircraft that derives from the U.S. Air Force’s High Lift-Over-Drag Active (HiLDA) wing experimental model. An effective method is used to model very flexible blended-wing-body vehicles based on a low-order aeroelastic formulation that is capable of capturing the important str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 16 شماره
صفحات -
تاریخ انتشار 2006